首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1159篇
  免费   290篇
  国内免费   32篇
  2023年   4篇
  2022年   6篇
  2021年   25篇
  2020年   42篇
  2019年   89篇
  2018年   81篇
  2017年   67篇
  2016年   92篇
  2015年   61篇
  2014年   90篇
  2013年   107篇
  2012年   79篇
  2011年   82篇
  2010年   59篇
  2009年   59篇
  2008年   57篇
  2007年   53篇
  2006年   51篇
  2005年   45篇
  2004年   43篇
  2003年   33篇
  2002年   35篇
  2001年   31篇
  2000年   25篇
  1999年   10篇
  1998年   18篇
  1997年   10篇
  1996年   13篇
  1995年   13篇
  1994年   12篇
  1993年   13篇
  1992年   6篇
  1991年   6篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   8篇
  1984年   8篇
  1983年   1篇
  1982年   5篇
  1981年   6篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有1481条查询结果,搜索用时 31 毫秒
101.
Temperature is a major determinant of plant growth, development and success. Understanding how plants respond to temperature is particularly relevant in a warming climate. Plant immune responses are often suppressed above species‐specific critical temperatures. This is also true for intraspecific hybrids of Arabidopsis thaliana that express hybrid necrosis due to inappropriate activation of the immune system caused by epistatic interactions between alleles from different genomes. The relationship between temperature and defence is unclear, largely due to a lack of studies that assess immune activation over a wide range of temperatures. To test whether the temperature‐based suppression of ectopic immune activation in hybrids exhibits a linear or non‐linear relationship, we characterised the molecular and morphological phenotypes of two different necrotic A. thaliana hybrids over a range of ecologically relevant temperatures. We found both linear and non‐linear responses for expression of immunity markers and for morphological defects depending on the underlying genetic cause. This suggests that the influence of temperature on the trade‐off between immunity and growth depends on the specific defence components involved.  相似文献   
102.
103.
104.
Solution‐processable small molecules are significant for producing high‐performance bulk heterojunction organic solar cells (OSCs). Shortening alkyl chains, while ensuring proper miscibility with fullerene, enables modulation of molecular stacking, which is an effective method for improving device performance. Here, the design and synthesis of two solution‐processable small molecules based on a conjugated backbone with a novel end‐capped acceptor (oxo–alkylated nitrile) using octyl and hexyl chains attached to π–bridge, and octyl and pentyl chains attached to the acceptor is reported. Shortening the length of the widely used octyl chains improves self‐assembly and device performance. Differential scanning calorimetry and grazing incidence X‐ray diffraction results demonstrated that the molecule substituted by shorter chains shows tighter molecular stacking and higher crystallinity in the mixture with 6,6‐phenyl‐C71‐butyric acid methyl ester (PC71BM) and that the power conversion efficiency (PCE) of the OSC is as high as 5.6% with an open circuit voltage (Voc) of 0.87 V, a current density (Jsc) of 9.94 mA cm‐2, and an impressive filled factor (FF) of 65% in optimized devices. These findings provide valuable insights into the production of highly efficient solution‐processable small molecules for OSCs.  相似文献   
105.
106.
The within-population polymorphism of wild radish (Raphanus raphanistrum) for interspecific hybridisation with two cultivars of oilseed rape (Brassica napus) was investigated by hand crossing experiments and fluorescence microscopy. Wide variability among plants was observed in the ability of oilseed rape pollen to germinate on the wild radish stigma; the frequency of pistils showing pollen tubes ranged from 0 to 1, depending on the female plant. The ratio of fertilised ovules to the total number of ovules in ovaries where pollen tubes arrived ranged from 0.02 to 0.51. Overall, the results provide evidence for the presence of different phenotypes. In 40% of the plants, pistils had no or very few pollen tubes and few fertilised ovules. In 23%, the foreign pollen tubes grew through the style towards the ovary, but had low ovule fertilisation efficiency. The remaining 37% showed a large number of pollen tubes in the style and frequent ovule fertilisation, and two plants showed no difference between foreign and conspecific pollen. With regard to post-zygotic barriers, pollen germination and ovule fertilisation represent minor barriers to interspecific hybridisation between oilseed rape and wild radish. It is suggested that the effectiveness of these barriers could be improved through plant breeding; this could reduce the risk of gene flow from transgenic oilseed rape to populations of wild relatives. Received: 15 April 2001 / Accepted: 24 May 2001  相似文献   
107.
Many androgenetic fish hybrids are nonviable due to the disturbed interaction between the foreign nucleus and the cytoplasm. It has been proposed that this incompatibility can be overcome if eggs from interspecific hybrids and sperm from one of the parental species are used for diploid androgenesis. Indeed, the androgenetic progeny obtained as a result of the insemination of the enucleated eggs of goldfish and carp hybrids by the carp spermatozoa proved to be viable and fertile. This approach may be used for reconstitution of the genotypes of rare or disappearing fish species with the help of induced androgenesis, if their native or cryoconserved sperm is available.  相似文献   
108.
Honeybee colonies offer an excellent environment for microbial pathogen development. The highest virulent, colony killing, bacterial agents are Paenibacillus larvae causing American foulbrood (AFB), and European foulbrood (EFB) associated bacteria. Besides the innate immune defense, honeybees evolved behavioral defenses to combat infections. Foraging of antimicrobial plant compounds plays a key role for this “social immunity” behavior. Secondary plant metabolites in floral nectar are known for their antimicrobial effects. Yet, these compounds are highly plant specific, and the effects on bee health will depend on the floral origin of the honey produced. As worker bees not only feed themselves, but also the larvae and other colony members, honey is a prime candidate acting as self‐medication agent in honeybee colonies to prevent or decrease infections. Here, we test eight AFB and EFB bacterial strains and the growth inhibitory activity of three honey types. Using a high‐throughput cell growth assay, we show that all honeys have high growth inhibitory activity and the two monofloral honeys appeared to be strain specific. The specificity of the monofloral honeys and the strong antimicrobial potential of the polyfloral honey suggest that the diversity of honeys in the honey stores of a colony may be highly adaptive for its “social immunity” against the highly diverse suite of pathogens encountered in nature. This ecological diversity may therefore operate similar to the well‐known effects of host genetic variance in the arms race between host and parasite.  相似文献   
109.
The influence of different pollen donors on seed formation was investigated in three populations ofEspeletia schultzii that differ in environmental conditions and life history characteristics. Self pollen and pollen from different donors (< 15m apart) within each population was used in a diallel design in order to test the genetic base of seed set variation. Three measures of seed formation were used: (1) achene number; (2) proportion of filled achenes (fruits) that distinguishes between achenes with seeds and empty achenes; (3) proportion of aborted seeds that distinguishes between viable and aborted seeds. Self-pollinations resulted in empty achenes. Achene number did not vary between the different pollen donors. A bimodal pattern of filled achenes was found in two populations in two consecutive years. On the other hand, a unimodal pattern was found in crosses between more distant donors (> 30m). These patterns seems to be the results of a sporophytic incompatibility system. Seed abortion was highest at the higher elevations and seems to be correlated with elevation rather than with any genetic effect.  相似文献   
110.
Summary The phenomenon of interspecific incompatibility between various wild tuber-bearing and closely related non-tuber-bearing Solanum species was studied. One area of investigation included an examination of possible protein interactions in the incompatibility reaction using SDS electrophoresis. Pollen tube inhibition and morphology were examined in conjunction with biochemical analysis. Two sets of crosses were examined: interspecific tuber-bearing species crosses and interspecific tuber-bearing × non-tuber-bearing species crosses. These crosses had consistent pollen tube inhibition in the upper one-third of the style. The upper third of the styles of incompatibly pollinated, compatibly pollinated, and unpollinated styles was studied under fluorescence microscopy to observe pollen tube growth and morphology. Interspecific tuber-bearing × non-tuber-bearing species crosses demonstrated consistent pollen tube inhibition just below the stigma with frequent pollen tube swelling and bursting and extensive callose deposition along the pollen tube wall. Interspecific tuber-bearing species crosses had pollen tube inhibition further down the style with pollen tube tip tapering and extensive callose deposition. Stylar proteins of the lower two-thirds of the styles were analyzed with SDS electrophoresis. No unique protein differences were found to be specifically associated with the interspecific incompatibility reaction in this portion of the style.Cooperative investigation of the U.S. Department of Agriculture, Agricultural Research Service, and the Wisconsin Experiment Station. Supported in part by the USDA, Cooperative States Research Service Competitive grant no. 83-CRCR-1-1253  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号